Code No.: 18432 (A) N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.C.E.) VIII-Semester Main & Backlog Examinations, May-2023 Real Time Systems (PE-VI)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Q. No.	Stem of the question	M	I	CO) PO	DC
1.	Differentiate between Hard and soft RTS?	2		Stre	PO	PSO
2.	Define the following characteristics of Real time systems		1	1	1	1
	a) Concurrency b) Custom Hardware	2	1	1	1	1
3.	Differentiate between Preemptive and Non-Preemptive Scheduling?	2	2	2	1	
4.	State whether the given statement is TRUE/FALSE with a valid justification?	2	3	2	2	-
	"RM Algorithm is optimal for scheduling access of several hard real time periodic tasks to a certain shared critical resource"					
5.	Define unbounded Priority inversion with a suitable example?	2	1	3	1	1
6.	How a ceil value is assigned to a shared resource in PCP?	2	3	3	2	
7.	List the function of Memory management unit in RTOS?	2	1	1		1
8.	Differentiate between Traditional OS and RTOS?	2	2	4	1	•
9.	What are the causes of occurrence of faults in RTOS?	2	1	5	1	122
10.	List any two applications of RTOS in the field of VoIP (voice over Internet Protocol)?	2	1	5	1	1,2,3 1,2,3
	Part-B $(5 \times 8 = 40 \text{ Marks})$					
1. a)	In a hard real time system is it necessary that every task in the system be of hard real time type? Explain your answer with a suitable example?	3	2	1	2	1
b) '	What is the necessity of scheduler in RTS explain with a suitable example? Give the classification of schedulers in Real time systems?	5	3	1	2	1
	Calculate the CPU utilization time (Ui)	3	2	•	dia	
	for $t1 - T1(P1) = 60$ msec $C1 = 25$	3	3	2	1,2	-
	for $t2 - T2(P2) = 90$ msec C1=40					100
I	Draw the timing diagram if Priority of t1> t2					

b)	Int	erpret wh	nether the give ocessor syster	en set of per	Algorithm's	?	schedulable		,			
	on	Task		Processing Time(ms)	Period (ms)	Deadline (ms)		6) (5		
	-	T1	20	25	150	100				~		
	+	T2	40	7	40	40	20 27 2					
	+	T3	60	10	60	50						
	1	T4	25	10	30	20						
. a)	C	xplain the	otocol?				e for priority	4	2	3	1	1
b)	V	Vith a sui	table exampl	e explain ,ho	w the Prior	rity Inheritan	ce Protocol	4	3	3	1	1
U)	l'	revents I	Inbounded Pr	iority invers	ion?							
	1	- C	T ++9 Ev	nlain the pro	cess of Inte	errupt handlir	ng in VxWorks	4	1	4	1	-
4. a)	I	Define an RTOS?	Interrupt? Ex	plant the pro-		aring in	3104					
b)	(Compare	the First fit, I	Best fit, Next	fit and Wo	erst fit memor	ry management	4	3	4	2,3	-
]	policies v	with suitable e	xample:		CDTOC ampl	oved for safety	4	4	5	2	1,2,3
5. a)		-critical d	lomains''				loyed for safety					
		Justify th	e above state	ment with an	example	case study?					ac.	
1		Evalain l	ow RTOS si	enifies its im	portance in	ATC(Air T	raffic Control)?	4	2	5	1	1,2,3
b)	Explain	10W 1C1 0 2 2-	1 1 CD 14	ma system	with a suita	ble diagram?	4	2	1	1	1
16. a	.)	Explain	the basic mo	del of Real ti	me system	i willi a saita	ble diagram?	4	2	2	2	. 415
b)	Write a !	brief note on	short coming	s of EDF a	and RM Algo	orithms?	4	2	_	_	
7			any two of th									
7.	a)	Explain	how the dea	adlocks and	unbounde	d priority in	versions can be	4	3	3	2,3	1
			ne using PCP		commerci	al RTOS?		4	2	4	1	/
1	b)	Write an	ny four featur	es of µCOS	Commerci	ui ICI OD.			2	5	2,3	1,2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

	Blooms Taxonomy Level – 1	20%
)	Blooms Taxonomy Level – 2	38.75%
i)	Blooms Taxonomy Level – 3 & 4	41.25%
ii)	Blooms Taxonomy Devel 3 cd.	
